二分查找及其变形

本文对二分查找以及其变形出的部分题目做了总结,增强对二分查找的理解和运用。

二分查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
* 二分查找
*
* @param a 有序数组
* @param n 数组长度
* @param value 给定的元素
* @return
*/
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = (low + high) / 2;
if (a[mid] == value) {
return mid;
} else if (a[mid] < value) {
low = mid + 1;
} else {
high = mid - 1;
}
}
return -1;
}

关注点

循环退出条件

注意是 low<=high,而不是low<high。

mid的取值

实际上, mid=(low+high)/2这种写法是有问题的。因为如果low和high比较大的话,两者之和就有可能会溢出。改进的方法是将mid的计算方式写成 low+(high - low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以2操作转化成位运算 **low+((high-low)>>1)**。因为相比除法运算来说,计算机处理位运算要
快得多。

low和high的更新

low=mid+1,high=mid-1。注意这里的+1和-1,如果直接写成low=mid或者high=mid,就可能会发生死循环。比如,当high=3, low=3时,如果a[3]不等于value,就
会导致一直循环不退出

局限性

依赖的是顺序表结构

简单点说就是数组。那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是O(1),而链表随机访问的时间复杂度是O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。

二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。

针对的是有序数据

二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是O(nlogn)。所以,如
果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较
低。

但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。

所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用

不适合数据量太小

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为10的数组中查找一个元素,不管用二分查找还是顺序遍历,查
找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显

不过,这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,都推荐使用二分查找。比如,数组中存储的都是长度超过300的字符串,如此长
的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。

数据量太大也不适合

二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。比如,我们有1GB大小的数据,如果希望用数组来存储,那就需要的连续内存空间。

注意这里的“连续”二字,也就是说,即便有2GB的内存空间剩余,但是如果这剩余的2GB内存空间都是零散的,没有连续的1GB大小的内存空间,那照样无法申请一个1GB大小的数组

而我们的二分查找是作用在数组这种数据结构之上的,所以太大的数据用数组存储就比较吃力了,也就不能用二分查找了。


查找第一个值等于给定值的元素

有序数据集合中存在重复的数据,我们希望找到第一个值等于给定值的数据。

比如下面这样一个有序数组,其中, a[5], a[6], a[7]的值都等于8,是重复的数据。我们希望查找第一个等于8的数据,也就是下标是5的元素。

1M4wqI.png

如果我们用普通二分查找的代码实现,首先拿8与区间的中间值a[4]比较, 8比6大,于是在下标5到9之间继续查找。下标5和9的中间位置是下标7, a[7]正好等于8,所以代码就返回了。
尽管a[7]也等于8,但它并不是我们想要找的第一个等于8的元素,因为第一个值等于8的元素是数组下标为5的元素。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
* 查找第一个值等于给定值的元素
*
* @param a 有序数组
* @param n 数组长度
* @param value 给定的元素
* @return
*/
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == 0) || (a[mid - 1] != value)) return mid;
else high = mid - 1;
}
}
return -1;
}

稍微解释一下这段代码。 a[mid]跟要查找的value的大小关系有三种情况:大于、小于、等于。

对于a[mid]>value的情况,我们需要更新high= mid-1;

对于a[mid] < value的情况,我们需要更新low=mid+1。这两点都很
好理解。

当a[mid]=value的时候,
如果我们查找的是任意一个值等于给定值的元素,当a[mid]等于要查找的值时, a[mid]就是我们要找的元素。但是,如果我们求解的是第一个值等于给定值的元素,当a[mid]等于要查找的值时,我们就需要确认一下这
个a[mid]是不是第一个值等于给定值的元素。

我们重点看第11行代码。如果mid等于0,那这个元素已经是数组的第一个元素,那它肯定是我们要找的;如果mid不等于0,但a[mid]的前一个元素a[mid-1]不等于value,那也说明a[mid]就是我们要找的第一个值等于给定值的元素。

如果经过检查之后发现a[mid]前面的一个元素a[mid-1]也等于value,那说明此时的a[mid]肯定不是我们要查找的第一个值等于给定值的元素。那我们就更新high=mid-1,因为要找的元素肯定出现在[low, mid-1]之间。


查找最后一个值等于给定值的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
* 查找最后一个值等于给定值的元素
*
* @param a 有序数组
* @param n 数组长度
* @param value 给定的元素
* @return
*/
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else if (a[mid] < value) {
low = mid + 1;
} else {
if ((mid == n - 1) || (a[mid + 1] != value)) return mid;
else low = mid + 1;
}
}
return -1;
}

如果a[mid]这个元素已经是数组中的最后一个元素了,那它肯定是我们要找的;如果a[mid]的后一个元素a[mid+1]不等于value,那也说明a[mid]就是我们要找的最后一个值等于给定值的元
素。

如果我们经过检查之后,发现a[mid]后面的一个元素a[mid+1]也等于value,那说明当前的这个a[mid]并不是最后一个值等于给定值的元素。我们就更新low=mid+1,因为要找的元素肯定出现在[mid+1, high]之间.


查找第一个大于等于给定值的元素

在有序数组中,查找第一个大于等于给定值的元素。比如,数组中存储的这样一个序列: 3, 4, 6, 7, 10。如果查找第一个大于等于5的元素,那就是6。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* 查找第一个大于等于给定值的元素
*
* @param a 有序数组
* @param n 数组长度
* @param value 给定的元素
* @return
*/
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] >= value) {
if ((mid == 0) || (a[mid - 1] < value)) return mid;
else high = mid - 1;
} else {
low = mid + 1;
}
}
return -1;
}

如果a[mid]小于要查找的值value,那要查找的值肯定在[mid+1, high]之间,所以,我们更新low=mid+1。

对于a[mid]大于等于给定值value的情况,我们要先看下这个a[mid]是不是我们要找的第一个值大于等于给定值的元素。如果a[mid]前面已经没有元素,或者前面一个元素小于要查找的值value,那a[mid]就是我们要找的元素。这段逻辑对应的代码是第7行。

如果a[mid-1]也大于等于要查找的值value,那说明要查找的元素在[low, mid-1]之间,所以,我们将high更新为mid-1


查找最后一个小于等于给定值的元素

比如,数组中存储了这样一组数据: 3, 5, 6, 8, 9, 10。最后一个小于等于7的元素就是6。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* 查找最后一个小于等于给 定值的元素
*
* @param a 有序数组
* @param n 数组长度
* @param value 给定的元素
* @return
*/
public int bsearch(int[] a, int n, int value) {
int low = 0;
int high = n - 1;
while (low <= high) {
int mid = low + ((high - low) >> 1);
if (a[mid] > value) {
high = mid - 1;
} else {
if ((mid == n - 1) || (a[mid + 1] > value)) return mid;
else low = mid + 1;
}
}
return -1;
}